

Angle-resolved photoemission spectroscopy of quantum materials

Cheng-Maw Cheng (鄭澄懋) makalu@nsrrc.org.tw

National Synchrotron Radiation Research Center Department of Physics, NSYSU

Outline

- Introduction to angle-resolved photoemission spectroscopy (ARPES)
 - Band structure of solids
 - How to probe the electronic structure
 - Scientific cases
- The electronic structure of emergent materials
 - Graphene based materials
 - Beyond graphene : 2D materials
 - Topological insulators (TIs)
 - Toward future electronic devices : nano-focus ARPES
- Summary

100 Years of Photoemission

X-ray¹ Photoelectron spectroscopy, based on the photoelectric effect,^{2,3} was developed in the mid-1960's as a practical technique by Kai Siegbahn and his research group at the University of Uppsala, Sweden.⁴

Wilhelm Conrad Röntgen

Heinrich Rudolf Hertz

Albert Einstein

Kai M. Siegbahn

- 1. W. Röntgen, 1901 Nobel Prize in Physics "in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him."
- 2. H. Hertz, Ann. Physik 31,983 (1887).
- 3. A. Einstein, Ann. Physik 17,132 (1905). 1921 Nobel Prize in Physics "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect."
- 4. K. Siegbahn, Et. Al., Nova Acta Regiae Soc.Sci., Ser. IV, Vol. 20 (1967). 1981 Nobel Prize in Physics "for his contribution to the development of high resolution electron spectroscopy."

What is photoemission?

Photon in -> electron out (emission)

What is photoemission spectroscopy? (photoelectron spectroscopy) (PES)

Initial state: ground (neutral) state

Conservation of energy

 E_k : photoelectron kinetic energy $E_i(N)$: total initial state system energy $E_f(N-1)$: total final state system energy Electron energy analyzer

Final state: hole (excited) state

Energy Distribution Curve (EDC) (Spectrum)

The energy level of hydrogen atom

Kyle Shen, IGERT Lecture 2008

Hydrogen atom spectrum

http://www.assignmentpoint.com/science/physics/introduction-of-hydrogen-spectrum.html

Gas phase test

what we are interested in

CMR's

CDW's

Quasicrystals

Nature 2000

Quantum Wells

C₆₀

Nanotubes

Nature 2003

Diamond

The crystal structure and momentum space

Z. Hussain, ALS summer school

primitive vectors **a**₁, **a**₂, **a**₃

reciprocal lattice vector **b**₁,**b**₂,**b**₃

$$\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{V}$$
$$\vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{V}$$
$$\vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{V}$$
$$V = \vec{a}_1 \cdot \vec{a}_2 \times \vec{a}_3$$
reciprocal lattice **G** :
$$\vec{G} = l\vec{b}_1 + m\vec{b}_2 + n\vec{b}_3$$
$$l, m, n \text{ are any integers}$$

 \vec{G}

- Deeply bound "core" electrons remain basically unchanged
- Outermost "valence" electrons hybridize forming continuous "energy bands"

Band theory

Two approximations

Nearly free electrons. Electrons are non-interacting in a periodic crystal potential which is relatively weak and can be treated as a perturbation. As in the free-electron-gas model, they are still subject to the Pauli exclusion principle.

Free electron gas : The interactions between electrons and between electrons and nuclei are turned off, subject only to the Pauli exclusion principle.

Tightly-bonding approximation

Electrons are tightly bound to particular atoms, overlapping only weakly with neighbors.

what we are interested in

Many properties of a solids are determined by electrons near E_F (conductivity, magnetoresistance, superconductivity, magnetism)

Fermi-Dirac Distribution

Thermal Properties of Free Electron Gas: Almost every electronic transport property of solids is proportional to $D(\mathcal{E}_F)$.

Fermi function
(Fermi-Dirac distribution)
$$f(\mathcal{E}) = \frac{1}{e^{(\mathcal{E}-\mu)/k_BT} + 1}$$
RT ~ 25 meV
$$f(\mathcal{E}): k_BT = .005\mu$$

$$f(\mathcal{E}): k_BT = .025\mu$$

$$exp[-\beta(\mathcal{E}-\mu)]: k_BT = .25\mu$$

$$\mu$$

Fig. 2.3. Ultra-high resolution photoemission spectrum on a polycrystalline gold sample (evaporated Au film) for the determination of the energy resolution. The Fermi edge was measured at T = 2.9 K using a frequency tripled (KBe₂BO₃F₂ crystal, KBBF) YVO₃ laser for the photoexcitation ($h\nu = 6.994$ eV) [15]

Hufner, Very high resolution photoelectron spectroscopy

Fermi Surface

Example: the electronic structure of graphene

千完中心 Research Center

The unit cell of graphene

$$H(\vec{k}) = \begin{pmatrix} E_0 + \Delta & \gamma_0 f(\vec{k}) & \gamma_1 & \gamma_4 f^*(\vec{k}) \\ \gamma_0 f^*(\vec{k}) & E_0 & \gamma_4 f^*(\vec{k}) & \gamma_3 f(\vec{k}) \\ \gamma_1 & \gamma_4 f(\vec{k}) & E_0 + \Delta & \gamma_0 f^*(\vec{k}) \\ \gamma_4 f(\vec{k}) & \gamma_3 f^*(\vec{k}) & \gamma_0 f(\vec{k}) & E_0 \end{pmatrix}$$
(b)

$$f(\vec{k}) = \exp(ik_x a_0 / 2\sqrt{3}) + 2\exp(-ik_x a_0 / 2\sqrt{3})\cos(k_y / 2)$$
$$\vec{k} = (k_x, k_y)$$

21 A. Gruneis et al., PRB (2008)

Pure 2D material : graphene

Pure 2D material : graphene

The band structure of graphene/SiC

Coletti et al., PRB (2013)

Why orientation of solid so important

conventional ARPES of polycrystalline graphite

Fermi Surface

most of the momentum information is lost as our spot size is much larger than the grain size.

How to probe the electronic structure of solids

The principle of photoemission spectroscopy

What is photoemission spectroscopy? (photoelectron spectroscopy) (PES)

Initial state: ground (neutral) state

Conservation of energy

 E_k : photoelectron kinetic energy $E_i(N)$: total initial state system energy $E_f(N-1)$: total final state system energy Electron energy analyzer

Final state: hole (excited) state

Energy Distribution Curve (EDC) (Spectrum)

The principle of photoemission spectroscopy

- Deeply bound "core" electrons remain basically unchanged
- Outermost "valence" electrons hybridize forming continuous "energy bands"

What are the samples and probed states?

- Atoms
- Molecules
- Nanoparticles
- Solids

atomic orbitals (states) molecular orbitals core level states (atomic like) valence bands/states core level states (atomic like) valence bands core level states (atomic like)

Kai Seigbahn: Development of X-ray Photoelectron Spectroscopy

C. Nordling E. Sokolowski and K. Siegbahn, Phys. Rev. 1957, 105, 1676.

Precision Method for Obtaining Absolute Values of Atomic Binding Energies

CARL NORDLING, EVELVN SOKOLOWSKI, AND KAI SIEGBAHN Department of Physics, University of Uppsala, Uppsala, Sweden (Received January 10, 1957)

W^E have recently developed a precision method of investigating atomic binding energies, which we believe will find application in a variety of problems in atomic and solid state physics. In principle, the method

FIG. 1. Lines resulting from photoelectrons expelled from Cu by $Mo K \alpha_1$ and $Mo K \alpha_2$ x-radiation. The satellites marked D.E.L. are interpreted as due to electrons which have suffered a discrete energy loss when scattered in the source.

Nobel Prize in Physics 1981 (His father, Manne Siegbahn, won the Nobel Prize in Physics in 1924 for the development of X-ray spectroscopy)

Photoemission Core Level Spectroscopy

Element	KIs	L ₁ 2s	$L_2 ^2 P_{1/2}$	$L_3\mathrm{Ip}_{3/2}$	Mg 34	$M_23p_{\rm W2}$	M ₃ Jp _{3/2}	$M_4 M_{3/2}$	$M_{5}.34_{5/2}$	N ₁ is	N ₂ dp _{1/2}	N34P3/2	
1.0	12.6												
2 He	24.6*								0		1		the strength of the strength o
3 Li	54.7*								- Ca	ore.	lev	/ei n	olnding energies are
4 Be	111.5*								· · ·				
5 B	188*								ala	~ ~ ~	-+-	- riat	in of each arbital of
6 C	284.2*	27.24							CU	ara	ICLE	ะกรเ	ic of each orbital of
7 N	439.9*	37.3*											
a 0 a 5	563.1*	41.01							~~~	ah		. m o	int
9 F 10 No	9700.14	44.59	11.78	21.68					ea		ele	ille	i i l
II Na	1070.81	43.59	30.65	30.81									
12 Ma	1303.09	\$5.7	49.78	49.50									
13 AI	1559.6	117.8	12.85	72.55									
14.5i	1830	149.7%	99.82	99.42									
15.0	2148.5	180*	136*	138*					Fi	nde	n n	vrint	C
16 S	2472	230.9	163.6*	162.5*						nge	γP	11116	3
17 CI	2822.4	270*	262*	200*									
18 At	3205.9*	326.3*	259.61	248.4*	29.3*	15.5*	15.7*						
19 K	3608.4*	378.6*	297.3^{+}	294.6*	34.8*	38.3*	18.3*						
20 Ca	4038.5*	438.49	349.74	346.21	443 †	25.41	25.44		~				
23 V	5465	626.7†	519.81	512.1†	66.31	37.21	37.2†		- C.C	ore	Ie\	lei F	3E independent of
24 Cr	5989	696.01	583.81	574.1†	74.11	42.21	42.21		<u> </u>				
25 Ma	6539	769.11	6493.81	638.74	82.39	47.21	47.29		un la	-+-			res cura a al
26 Fc	7112	844.61	719.8*	706.89	91.3	52.T†	52.74		DD	IOIC	n e	enei	rav usea
27 Co	1709	925.11	793.21	778.11	101.01	58.91	59,91		- · ·				3)
28 Ni	8333	1008.6	\$70.84	852.74	110.89	68.04	66.24						
29 Cu	8879	1096.7†	\$52.3F	932.7	122.51	17.34	75.1†						
30 Zn	9639	1196.2*	1044.3*	1021.84	139.8*	51.4*	88.6*	10.2*	10.1*				
11 Ge	10367	1299/0*b	1345.21	1116.04	159.51	140.81	100.01	18.7	18.74				
12.00	1100	1414.0*0	1245.170	12111/98	201.78	124.9*	120.04*	29.5	28.2				
14.6-	11662	1422-046	1454.145	1323.010	200.75	140.2	140.24	41	46.1*				
15 Br	13434	17879	19368	1990	2574	190.2	1829	205	682				
16 Kr	14326	1921	1730.42	1678.45	292.8*	222.24	214.4	95.0#	03.54	27.5*	14.15	14.1*	
17 Rh	11200	2065	1864	1804	326.7*	245.71	250.1*	113.02	1129	30.5*	16.3*	153.9	
38 Sr	16105	2216	2007	1940	355.79	290.31	270.09	136.07	134.21	38.91	21.3	20.1*	
39 Y	17088	2373	2156	2080	392.0*b	330.6*	298.8*	157.31	155.81	43.8*	24.4*	23.1*	
40 Zr	17998	2532	2307	2223	430.31	343.51	329.81	181.17	178.81	50.61	28.51	27.11	
41 Nb	18996	2698	2465	2371	495.67	376.11	360.6†	205.01	202.31	56.41	32.61	30.8†	
42 Ma	20000	2866	2825	2520	506.39	411.61	384.09	231.17	227.99	63.29	37.61	15.59	
43 Tc	21044	3043	2793	2671	544*	447.6	417.7	257.6	253.0*	69.5*	42.3*	30.9*	
44 Eu	22117	3224	2867	2838	586.1*	483.51	461.4†	284.2†	280.01	75.04	46.31	43.2†	
45 Rh	23220	3412	3346	3004	628.17	\$21.31	496.5†	311.97	307.21	81.4*b	50.51	47.3†	
46 Pd	24390	3604	3330	3173	671.69	599.91	532.3†	349.51	335.2†	87.L*b	55.7†a	50.91	
47 AE	25514	3405	3524	3351	719.09	603.81	573.01	374.01	368.3	97.01	63.79	58.34	

Table 1-1. Electron binding energies, in electron volts, for the elements in their natural forms.

Auger Electron Spectroscopy

Core electron ionized by photons or high energy electrons Non-radiative core hole decay → Auger electron emission Radiative decay → Fluorescent x-ray emission (a) Photoelectric absorption

(b) Fluorescent X-ray emission

(synchrotron)

(c) Auger electron emission

Photoelectron probing Depth

The powerful spectroscopic tools such as XPS and UPS might be limited in in-situ chemical analysis because of the short penetration depth of electrons. National Synchrotron Radiation Research Center

Electron Escape Depth : Surface Sensitivity

Why are electrons so useful as probes of surfaces?

or

Not so useful for studying bulk properties !!

Minimum due to electron-electron scattering, mainly plasmons

PES is a surface sensitive technique! (requires UHV)

High energy photoemission: several keV to increase bulk sensitivity

Why ARPES - key technique for the electronic structure mapping

- Angle-resolved photoemission spectroscopy (ARPES) is the most general tool to probe band structure, electronic interactions or spectral function mapping.
- Broad applications: surfaces, thin films, bulk materials, superconductors, magnetic/spin systems, complex materials, topological insulators, graphene based materials, charge density wave materials, low-dimensional systems, artificial stacks, device configurations, etc.

Angle-resolved Photoemission Spectroscopy

Conservation of Energy

$$E_{ph} = E_b + \Phi + E_k$$

Angle-resolved Photoemission Spectroscopy

Conservation of Energy

$$E_{ph} = E_b + \Phi + E_k$$

Angular Resolved Photoemission Spectroscopy(ARPES)

Electron emission angle: Θ Photon incident angle: ψ , *s*- and *p*-polarization

$$k_{\prime\prime\prime} = \sqrt{\frac{2m}{\hbar^2}} E_k \cdot \sin\theta$$
$$k_{\prime\prime\prime}(\text{Å}^{-1}) = 0.5123\sqrt{E_k(eV)} \cdot \sin\theta$$

 $k_{\parallel}(\text{inside}) = k_{\parallel}(\text{outside})$

Conservation of liner momentum

Important for 3D and 2D band mapping

$$k_{\perp} = 0.5123 \sqrt{(E_{kin} \cos^2 \theta + V_0)}$$

Conservation of linear momentum parallel to the surface

$$k_{out} = \sqrt{\frac{2m}{\hbar^2}} E_{kin}$$
$$k_{in} = \sqrt{\frac{2m}{\hbar^2}} (E_{kin} + V_0)$$
$$k_{out,\parallel} = k_{in,\parallel} \equiv k_{\parallel}$$

"Snell's Law"

$$k_{\parallel} = \sin\theta_{out} \sqrt{\frac{2m}{\hbar^2}} E_{kin} = \sin\theta_{in} \sqrt{\frac{2m}{\hbar^2}} (E_{kin} + V_0)$$

Critical angle for emission

$$(\sin\theta_{out})_{\max} = \sqrt{\frac{E_{kin}}{E_{kin} + V_0}}$$

$$k_{\perp} = 0.5123 \sqrt{(E_{kin} \cos^2 \theta + V_0)}$$
$$k_{\prime\prime} = 0.5123 \sqrt{E_{kin}} \sin \theta$$

- Low photon energy provides better momentum resolution, but the covering range of BZ is also small.
- We expect to study the electronic structure of solids at VUV region (10 eV~ 100 eV).

Early ARPES experimental result

Now a 2-D detector with \pm 30° and 0.1° angular resolution can be obtained.

T=300K

E⊥c

hv=22eV

-0.5

0.0

FIG. 1. A series of high-energy-resolution angle-resolved photoemission spectra, taken along the direction of the sample and for different values of the azimuthal angle.

Au(111) : The inversion symmetry is broken at the surface

Typical Experimental Result with 2D detector

Accumulate spectra of Rashba effect on Au(111) as the angle is scanned Emission

國家同步輻射研究中心 National Synchrotron Radiation Research Center

Krempasky et al., JESRP (2010)

Typical experimental result on graphene/SiC

Experimental geometry

Eli Rotenberg, ALS summer school

Rashba splitting on Au(111) surface

wational Synchrotron Radiation Research Center

Courtesy of M. Berndsen and O. Tjernberg, KTH, Stockholm

Quick Band Mapping with ARPES

Map the band structure over all BZ

> You need to understand the crystal structure of solids.

- The sample characterization, such as the orientation and crystalline, is quite important before conducting ARPES experiment.
- > XRD, Laue diffraction and LEED are required.

Light sources and terminology

Ultraviolet Photoemission Spectroscopy (UPS)

- UV He lamp (21.2 eV, 40.8 eV)
- Laser : 6 eV (BBO), 8 eV (KBBF), 11 eV (gas cell) or HHG (High harmonic generation)
- Valence band PES, direct electronic state info.
- X-ray Photoemission Spectroscopy (XPS) (Electron Spectroscopy for Chemical Analysis) (ESCA)
 - X-ray gun (Al: 1486.6 eV, Mg: 1253.6 eV)
 - core level PE, indirect electronic state info
 - chemical analysis

• Synchrotron radiation

- continuous tunable wavelength
- valance band and core level

Light sources and terminology

Ultraviolet Photoemission Spectroscopy (UPS)

- UV He lamp (21.2 eV, 40.8 eV)
- Laser : 6 eV (BBO), 8 eV (KBBF), 11 eV (gas cell) or HHG (High harmonic generation)
- Valence band PES, direct electronic state info.
- X-ray Photoemission Spectroscopy (XPS) (Electron Spectroscopy for Chemical Analysis) (ESCA)
 - X-ray gun (Al: 1486.6 eV, Mg: 1253.6 eV)
 - core level PE, indirect electronic state info
 - chemical analysis

• Synchrotron radiation

- continuous tunable wavelength
- valance band and core level

$$k_{\perp} = 0.5123\sqrt{(E_{kin}\cos^2\theta + V_0)}$$

$$k_{\parallel} = 0.5123\sqrt{E_{kin}}\sin\theta$$

Lattice constant : Graphene : 2.46 Å Cu(111) : 2.08 Å MoS₂ : 3.12 Å

- Assume the work function is 4.3 eV, please estimate the largest covering range of BZ at the Fermi level at 6 eV, 21.2 eV, 50 eV, 100 eV and 500 eV photon energy.
 Answer: 0.67 Å⁻¹, 2.11 Å⁻¹, 3.46 Å⁻¹, 5.01 Å⁻¹, 11.4 Å⁻¹
- The angle between the incident beam and spectrometer is 50 degree, please estimate the covering range of BZ at 6 eV, 21.2 eV, 50 eV, 100 eV and 500 eV photon energy.
 Answer: 0.51 Å⁻¹, 1.61 Å⁻¹, 2.65 Å⁻¹, 3.83 Å⁻¹, 8.45 Å⁻¹
- ✓ The BZ in single layer graphene, the magnitude of ΓK is 1.703 Å⁻¹. If you plan to probe the band structure of graphene near the K-point, what are the required angle between the surface normal and spectrometer at 6 eV, 21.2 eV, 50 eV, 100 eV and 500 eV photon energy?

Answer: mission impossible, 54 degree, 29.5 degree, 19.9 degree, 8.6 degree

Photon energy

defines the detectable area of Energy

$$E_{kin} = \hbar v - \phi$$

defines the accessible area of BZ

$$k_{\prime\prime\prime} = \frac{1}{\hbar} \sqrt{2mE_{kin}} \sin\theta$$

Phys. Rev. B 84, 014509 (2011)

Photon energy

defines the detectable area of Energy

$$E_{kin} = \hbar v - \phi$$

defines the accessible area of BZ

$$k_{\prime\prime\prime} = \frac{1}{\hbar} \sqrt{2mE_{kin}} \sin\theta$$

Phys. Rev. B 84, 014509 (2011)

Photon energy

defines the detectable area of Energy

$$E_{kin} = \hbar \nu - \phi$$

defines the accessible area of BZ

$$k_{\prime\prime} = \frac{1}{\hbar} \sqrt{2mE_{kin}} \sin\theta$$

Phys. Rev. B 84, 014509 (2011)

Why are electrons so useful as probes of surfaces?

Or

Not so useful for studying bulk properties !!

Minimum due to electron-electron scattering, mainly plasmons PES is a surface sensitive technique! (requires UHV) High energy photoemission: several keV to increase bulk sensitivity

The requirement of ARPES

- UHV environment : better than 1x10⁻¹⁰ Torr
- Single crystals or *in-situ* growth thin films
- Conductors or semiconductors
- Tunable photon energies

Figure 5.2: (color) The oxygen 1s peaks from Bi2212 at different times after the cleave. A constant background was subtracted from each spectrum to allow direct comparison. The peak derived from bulk oxygen is stable over time, while the surface oxygen peak grows as more oxygen sticks to the cold surface.

HC Hsu, Ph.D. Thesis NTNU(2010) Koralek, U. Colorado Ph.D. Thesis (2007)

Single crystals or *in-situ* growth well-ordered thin films are favorable for ARPES measurement

Base pressure : 1x10⁻¹⁰ Torr In-situ cleaved Bi₂Se₃ single crystal

Park et al., PRB (2010)

Current status of ARPES end station at TLS

What does ARPES measure

Eli Rotenberg, ALS summer school

The carriers have a finite lifetime due to absorption and emission of phonons and other excitations

Eli Rotenberg, ALS summer school

Self energy in photoemission spectra

The quantity determined in ARPES experiments is the single-particle spectral function

$$G(k,\omega) = \frac{1}{\omega - \varepsilon_k - \Sigma(k,\omega)}$$

$$A(k,\omega) = \frac{\operatorname{Im} \Sigma(k,\omega)}{\left[\omega - \varepsilon_k - \operatorname{Re} \Sigma(k,\omega)\right]^2 + \left[\operatorname{Im} \Sigma(k,\omega)\right]^2}$$

$$\Sigma = \operatorname{Re}\Sigma + i\operatorname{Im}\Sigma$$

Dispersion: E-k Relation (Velocity; Effective mass etc.)

國家同步輻射研究中心 National Synchrotron Radiation Research Center Scattering rate (Lifetime)

Optimally doped Bi-2212 cuprate

$$\hbar v_k \Delta k = \frac{\hbar v_k}{l} = \left| 2 \operatorname{Im} \Sigma(k, \omega) \right|$$

T. Valla et al., Science 285, 2110 (2000)

What does ARPES measure

Eli Rotenberg, ALS summer school

The unit cell of graphene

$$H(\vec{k}) = \begin{pmatrix} E_0 + \Delta & \gamma_0 f(\vec{k}) & \gamma_1 & \gamma_4 f^*(\vec{k}) \\ \gamma_0 f^*(\vec{k}) & E_0 & \gamma_4 f^*(\vec{k}) & \gamma_3 f(\vec{k}) \\ \gamma_1 & \gamma_4 f(\vec{k}) & E_0 + \Delta & \gamma_0 f^*(\vec{k}) \\ \gamma_4 f(\vec{k}) & \gamma_3 f^*(\vec{k}) & \gamma_0 f(\vec{k}) & E_0 \end{pmatrix}$$
(b)

$$f(\vec{k}) = \exp(ik_x a_0/2\sqrt{3}) + 2\exp(-ik_x a_0/2\sqrt{3})\cos(k_y/2)$$
$$\vec{k} = (k_x, k_y)$$

68 A. Gruneis et al., PRB (2008)

Photon energy dependent in ARPES experiment

$$\boldsymbol{b}_{1} = \frac{2\pi}{3a}(1,\sqrt{3}), \quad \boldsymbol{b}_{2} = \frac{2\pi}{3a}(1,-\sqrt{3})$$
$$\boldsymbol{K} = \left(\frac{2\pi}{3a},\frac{2\pi}{3\sqrt{3}a}\right), \quad \boldsymbol{K}' = \left(\frac{2\pi}{3a},-\frac{2\pi}{3\sqrt{3}a}\right)$$

Single layer and bilayer graphene

TBM fitted results for presented BLG/SiC

What does ARPES measure

Eli Rotenberg, ALS summer school
$$H(\vec{k}) = \begin{pmatrix} E_0 + \Delta & \gamma_0 f(\vec{k}) & \gamma_1 & \gamma_4 f^*(\vec{k}) \\ \gamma_0 f^*(\vec{k}) & E_0 & \gamma_4 f^*(\vec{k}) & \gamma_3 f(\vec{k}) \\ \gamma_1 & \gamma_4 f(\vec{k}) & E_0 + \Delta & \gamma_0 f^*(\vec{k}) \\ \gamma_4 f(\vec{k}) & \gamma_3 f^*(\vec{k}) & \gamma_0 f(\vec{k}) & E_0 \end{pmatrix}$$
(b)

$$f(\vec{k}) = \exp(ik_x a_0 / 2\sqrt{3}) + 2\exp(-ik_x a_0 / 2\sqrt{3})\cos(k_y / 2)$$
$$\vec{k} = (k_x, k_y)$$

73 A. Gruneis et al., PRB (2008)

Varing incident photon energies to determine the interlayer spacing of BLG/SiC

k_z dependent in bulk band mapping

k_z dependent in bulk band mapping

Cu²⁺ Cu⁺ Li O a~2b

Crystal structure of LiCu₂O₂

- 1. Floating zone technique
- 2. LEED and X-ray diffraction
- 3. In-situ cleave at 8x10⁻¹¹ torr

C b

Twin domains

Single domain

Photon energy dependence PES

• The bands between about 3.6 eV and 8 eV display a clear dispersion with photon energies disclosing a strong coupling along the *c*-axis,

 The bands above 3.6 eV until E_F: weaker dispersion, more localized character within each electronic bilayer. The electronic structure of $BiSbSe_3$ with varied incident photon energies.

The electronic structure of Sb₂Te₂Se

82 Lee et al., Scientific Reports (2016)

Using ARPES to study the electronic structure of emergent quantum materials

The rise of emergent quantum materials

Graphene and Beyond Graphene 2D Crystals Topological Instalators and Jonetre Spintrenics Application

What is Topology

The advantage of electron transport in TIs

electrons cannot be scattered by defects or other perturbations → little resistance

國家同步輻射研究中心 National Synchrotron Radiation Research Center

Z. Hasan and C. L. Kane. Reviews of Modern Physics (2010)

Hall Effect

Quantum Hall Effect

Topological insulator

- I. no external magnetic field
- II. pairs of currents
- III. Spin splitting

High magnetic field Low temperature

The applications of topological insulators

- Thermoelectric materials
 - $ZT = S^2\sigma/\kappa$
 - Bi₂Te₃, Sb₂Te₃
- Spintronics device
 - Quantum computing

topological superconductor

Band inversion in topological insulator

Xiao-Liang Qi and Shou-Cheng Zhang, RMP (2011)

The difference of band Structure between insulator and TI

http://www.scholarpedia.org/article/Topological_insulators

The electronic structure of TI

https://www.diamond.ac.uk/Science/Research/Highlights/2015/I10-MSG-TIs.html

Predictions of 3D topological insulators

Hsieh et al., Nature (2009)

Xiao-Liang Qi, RMP (2011)

Predictions of 3D topological insulators

Spectra taken at BL21B1, NSRRC

Y. Ando, J. Phys. Soc. Japan (2013)

Initial growth condition of Bi family TIs

Band mapping of Bi₂Se₃

97

Band mapping of Sb₂Te_{3-x}Se_x with varied Se content

Along $\overline{\Gamma}\overline{K}$

Tuning the position of the Dirac point in ternary TIs and doped TIs

Reducing the thickness of Sb₂Te₃ thin film

Eschbach et al., Nat. Comm. (2015)

Spin-orbit torque and surface states in topological insulators

https://spintronics.kaust.edu.sa/Pages/Research_Spin- 101 orbit%20physics.aspx

Spintronics potential at the surface of topological insulators

a pure spin current from the CoFe layer through the TI Bi2Se3 into the NiFe layer, exerting a spin transfer torque.

102 Baker et al., Scientific Reports (2015)

The applications of topological insulators

- Thermoelectric materials
 - $-ZT = S^2\sigma/\kappa$
 - Bi₂Te₃, Sb₂Te₃
- Spintronics device - Quantum computing

- Find predicted Majorana fermion
 - topological superconductor

Superconductivity in Sb₂Te₃

Sb₂Te₃ crystal was synthesized under 1.4 Mpa Te vapour pressure.

Carrier mobility increases to $\mu \sim 25,000$ due to the upshift of the Fermi energy

104 Zhao et al., Nat. Comm. (2015)

Superconductivity in Cu doped Bi₂Se₃ compound

Cu_xBi₂Se₃ for 0.1<x<0.15

Hor et al., PRL (2010)

Superconductivity in Cu doped Bi₂Se₃ compound

Tanaka et al., PRB (2012) 106

Superconductivity in Cu doped Bi₂Se₃ compound

Dirac semimetal and Weyl semimetal

113

Neupane et al., Nat. Comm. (2014)

3D semimetals with linear dispersion

Weyl semimetal (non-degenerated bands)

Dirac semimetal (doubly degenerated bands)

- The Dirac point can split into two Weyl points either by breaking the crystal inversion symmetry or time-reversal symmetry.
- In condensed matter physics, each Weyl point act like a singularity of the Berry curvature in the Brillion Zone – magnetic monopole in k-space

115 Liu et al., Nat. Mater. (2016)

Dirac semimetal Na₃Bi

Armitage et al., RMP (2018)

117

Weyl semimetal TaAs

Yang et al., Advances in Physics :X (2018)

118

Summary of Dirac semimetal and Weyl semimetal

I : inversion symmetry TR : time reversal symmetry

Yang et al., Advances in Physics :X (2018)

119

Graphene family

Figure 2. (a) Schematic of carbon atom and carbon allotropes, from 0D to 3D; (b) unit cell, basis and bond length of graphene; (c) atomic orbitals of graphene; (d, e) energy dispersion of graphene, where the energy dispersion is linear for low energies near the six corners (Dirac points) of the two-dimensional hexagonal Brillouin zone. (f) Energy dispersion of a semiconducting GNR, where a bandgap can be engineered by varying the width.

Kang et al., Proc. SPIE (2014) 120

Crystal structure of GNRs

Armchair Graphene Nanoribbons (AGNRs) TB simulation : semiconducting or metallic depending on the width of AGNRs

Zigzag Graphene Nanoribbons (ZGNRs) TB simulation : metallic for all ZGNRs

ribbon width and the edge configuration!

GNR bandgap vs width.

FS, Pezoldt, Granzner, Nanoscale 2015.

Frank Schwierz, Nanoscale (2015)

Sample preparation for GNRs

Nevius et al., Nano Lett. (2014) Palacio et al., Nano Lett. (2014)

Using ARPES to probe GNRs/SiC

Nevius et al., Nano Lett. (2014)

図家門安輻射灯光中心 National Synchrotron Radiation Research Center

125 Frank Schwierz, Nanoscale (2015)

2D materials :potential candidates for future applications

Figure 1. Schematic illustrating advantages of 2D materials: surfaces of (a) 3D and (b) 2D materials. The pristine interfaces (without out-of-plane dangling bonds) of 2D materials help reduce the interface traps. Mobile charge distribution in (c) 3D and (d) 2D crystals used as channel materials. The carrier confinement effect in 2D materials leads to excellent gate electrostatics. (e) Various types of 2D materials from insulator to superconductor. E_g denotes the band gap.

Kang et al., Proc. SPIE (2014)

2D materials :potential candidates for future applications

127 Tran et al., Progress in Materials Science (2018)

Technology

Silicon rival MoS2 promises small, lowenergy chips

③ 8 March 2012 | Technology

The first computer chip made out of a substance described as a "promising" alternative to silicon has been tested by researchers.

The Switzerland-based team used molybdenite (MoS2) - a dark-coloured, naturally occurring mineral.

The group said the substance could be used in thinner layers than silicon, which is currently the most commonly used component in electronics.

The researchers say molybdenite microchips would need less power than existing silicon-based circuits

Top Stories

Bad weather hits Japan quake survivors

Tens of thousands of people forced into shelters by two deadly tremors in Japan endure heavy rain and cold temperatures, as rescue efforts continue.

0 6 hours ago

Earthquake kills dozens in Ecuador

O 2 minutes ago

Rousseff in last-minute bid for support

6 hours ago

It said MoS2 could make smaller, more flexible chips that used less energy.

A demonstration of electric transistor fabricated with monolayer MoS_2 shows high current on/off ratios of > 10^8 . Even the mobility ~ $200 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ is much lower than that in graphene. The large current on/off ratio originates from sizeable band gap in MoS_2 .

Toward transistors with 1 nm gate lengths

Using a 2D material called molybdenum disulfide (MoS2), Samsung believes it could scale logic technology even further. Samsung and others are exploring so-called MoS2 FETs. "We believe around 1nm is possible."

National Synchrotron Radiation Research Center

129 Desai et al., Science (2016)

The device structure of flexible OLED display with MoS₂-based backplane circuitry

Benchmarks for display

	c-Si	poly-Si	a-Si	InGaZnO	Organic	Graphene	TMD
Band gap [eV]	1.12	1.12	2	3	~ 3	0	~ 1.8
Mobility	1600	450	2	20	10	>10,000	200~5000
Temp. [°C]	1000	600	200	R.T.	~ 100	R.T.	~ 600
Flexibility	×	×	×	×	00	0	0
Clearness	×	×	×	0	0	0	0
$ \begin{pmatrix} V_{Gase} = 4V \\ V_{Gase} = 5V \\ V_{Gase} = 6V \\ V_{Gase} = 7V \\ V_{Gase} = 8V \\ V_{Gase} = 9V \\ 0.5 \\ 0$							

132 Kuc et. al., PRB (2011)

М

Κ

0.2

0

-0.2

0.2

0

-0.2

Г

The electronic structure of MoSe₂

Zhang et al., Nat. Nano. (2013) ³

Alkali metal doped MoSe₂

Zhang et al., Nat. Nano. (2013) ¹

Black phosphorus (BP)

Catellanoas-Gomez, J. Phys. Chem. Lett. (2015)

The degradation of black phosphorus (BP)

Anisotropic Dirac semimetal state in BP

Anisotropic Dirac semimetal state in BP

Advanced Low-Dimensional Materials

Collection of the 2D materials

Advanced Low-Dimensional Materials

Advanced Low-Dimensional Materials

Nano Everywhere

Materials of interest often contain intrinsic, extrinsic, and designed nanoscale features. Need rapid electronic structure mapping at the nanoscale

A crucial problem to understand the electronic of exfoliated graphene

Van der Waals heterostructures

National Synchrotron Radiation Research Center
Van der Waals heterostructures

E

MoS₂

Graphene

MoS₂

Graphene

MoS₂

Ref : Shi et al., Nat. Comm. (2017) Hsu et al., Nat Comm. (2017)

Material discovery

<u>'Magic' Twist in Stacked Graphene Reveals Potentially</u> <u>Powerful Superconducting Behavior</u>

onature

Comparison of X-ray microscopy

X-ray focusing optics

Hard x-rays ~ 4-70 keV Resolution: > 1000 nm

coating (Schwarzschild Objective)

Monochromatic, good for E < 100eV

Resolution: best ~ 100 nm

Hard x-rays ~ 8-18 keV Resolution: > 3000 nm

Capillary focusing method

For f >> $n\lambda/2$, which corresponds to a small NA lens

$$NA = \sin \theta = \frac{\lambda}{2\Delta r} << 1$$

the radius of the nth zone is given by:

A real first focus is achieved when successive zones increase in radius by \sqrt{n}

FZP are highly chromatic

Rational Synchrotron Radiation Research Center

Beamlines in light sources worldwide for micro- or nano-ARPES

Light source	Micro- or nano-focusing	Energy range	Resolving power	
ALS 1.9GeV MAESTRO Commissioning	KB μ-ARPES (10 x10 μm) FZP/Capillary- nanoARPES (goal 50 nm/200 nm)	60-600 eV for microfocusing	3x10 ⁴ (10 ⁴ for opt. flux)	
SOLEIL 2.75GeV ANTARES	FZP (120 nm (opened for users))	95-300 eV with FZP	2x10 ⁴ (10-150 eV) 10 ⁴ (>150 eV)	
Diamond I05 Commissioning	FZP (700 nm)	60-150 eV	2x10 ⁴	
NSLS II 3GeV Construction	KB μ-ARPES (20 μm) (AP-XPS/SPEM)	15-1000 eV (200-2000 eV)	$10^5 - 10^4$	
SSRF S ² -line (combination of Nano-ARPES and Spin- ARPES) (BL07U) Construction	SSRF 5 ² -line (combination of Nano-ARPES and Spin- ARPES) (BL07U) Construction		unknown	

National Synchrotron Radiation Research Center

First NanoARPES facility, available at SOLEIL

Comparison with similar leading beamlines II

Source: Bostwick(ALS)

19th May 2017, 34 SAC SOLEIL, Gif-sur-Yvette, FRANCE

Comparison with similar leading beamlines III I05 ARPES beamline at Diamond Light Source, UK

Graphene/hBN van der Waals heterostructures

Graphene/hBN van der Waals heterostructures

TPS 39A Nano-focus ARPES

Core techniques:

Probe the electronic structure of novel materials

• **µARPES** :

Spatial resolution ~ 800 nm @20 eV/500nm for >50eV

• nanoARPES (Zone plate branch):

Spatial resolution ~ 50 nm

BL specification:

- Photon energy: 20 300 eV
- Resolving power $>10^5$
- Flux > 10^{12} ph/s with 10^4 resolving power

Laser catagory	Generation	Applica- tion	Pho. energy (eV)	Pulse width (ps, fs)	Rep. rate (kHz, MHz)	Max.Pho. flux (photons s ⁻¹	Energy res.) (meV)	Tem. Res. (fs)	References	Remarks
Quasi-CW	NLO crystal SFG+SHG	High-res ARPES	7	${\sim}10~{\rm ps}$	80 MHz	$1.5 imes 10^{15}$	0.26 meV	1	Liu et al [21]	(a)
			6	~70 fs (seed)	100 MHz	${\sim}10^{15}$	4.7 meV	1	Koralek et al [20]	(b)
			7	~10 ps	120 MHz	Unknown	0.025 meV	1	Okazaki et al [186]	(c)
			5.3–7	5 ps	76 MHz	$\sim 10^{14}$	Unsecified	1	Jiang et al [87]	(d)
CW	NLO crystal SFG+SHG	High-res ARPES	6.05	Infinite	Infinite	1×10^{15}	0.01	1	Tamai et al [37]	(e)
			6.49	Infinite	Infinite	1.25×10^{15}	${\sim}10^{-7}\text{meV}$	1	Scholz et al [54]	(f)
Pulsed laser	NLO crystal SFG+SHG	Tr- ARPES	1.5,6	50 fs, 160 fs	80 MHz	Unspecified	<22 meV	163 fs	Sobota et al [41]	(g)
			1.5,6.04	35 fs, 55 fs	250 kHz	$\sim 10^{13}$	40 meV	65 fs	Faure et al [40]	
			1.48, 5.92	170 fs,-	250 kHz	Unspecified	≥10.5 meV	≥240 fs	Ishida et al [149]	
HHG	Noble gas HHG	Tr- ARPES	1.58, 15–40	40 fs, 100 fs	10 kHz	3.6×10 ¹⁷	90 meV@35.6 eV	125 fs	Frietsch et al [43]	(h)
			1.6, 22.1	30 fs, 11 fs	10 kHz	Unspecified	170 meV	13 fs	Rohde et al [42]	(i)
			1.57, 20.4	30 fs	1 kHz	Unspecified	Unspecified	30 fs	Petersen et al [31]	
Mod./ Reson. type HHG	Mixed rare gas	High-res ARPES	10.5	10 ps,	0.2–8 MHz	9×10^{12}	<1 meV	1	Berntsen et al [75]	(j)
11-11-2			10.9	100 ps,	1-20 MHz	×10 ¹³	<2 meV	1	Yu He et al [76]	(k)
FEL	Long undu- lator	Tr- ARPES	26-300	30–150 ps	<10 Hz	Very high	300 meV	700 fs	Hellmann et al [59]	

 Table 1. Some typical laser light sources used in ARPES.

Method to generate VUV light

Tr-ARPES system in NSRRC

Laser source: Turn key Yb:KGW laser, fundamental 1030 nm, 190 fs. Probe: Kr (6 kHz), photon energy 25.7-32.9 eV Ar (10 kHz), photon energy 34.8-44.4 eV photon flux in the order of 10⁹ photons/sec beam size: 100 micro in diameter **Pump**: 1.2 eV/ 2.4 eV variable power density 1-13 mJ/cm² Variable polarization LV/LH for both pump and probe beam Temporal resolution ~ 230 fs Energy resolution ~90 meV at 300 K

Tr-ARPES preliminary results

Summary

- ARPES can provide a deeper insight for the understanding of electronic property in 2D materials.
- A combination with other tools, such as XPS, XAS, STM, pumpprobe experiment ...etc., can establish better model to explain novel phenomena in emergent materials
- A cooperation with theorists is necessary for ARPES guys.
- Hungry for high quality single crystal or thin film

Thanks for your attention